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Abstract We use multi response learning automata (MRLA) to control how secondary
users should access the licensed primary channels in cognitive radio networks. We seek two
aims in this paper: (1) estimating the availability probability of each primary channel and
(2) admission control of secondary users to decrease the rate of collisions between them. We
consider single and multiple secondary user scenarios. In the first scenario, the secondary
user deploys learning automata to estimate the primary channel availability probability for
efficient exploitation. In the second scenario, each secondary user deploys an algorithm based
on MRLA to estimate primary traffic as well as the behavior of other secondary users in order
to control the rate of collisions. Then, to have a better control on the rate of secondary colli-
sions, when the number of secondary users is greater than the number of primary channels, we
proposed an admission control scheme. In this scheme, some of secondary users are blocked
in each time slot and do not have any interaction with the environment. The convergence of
the proposed algorithms with and without admission schemes is analyzed. Simulation results
are provided to show the improvement in the secondary users’ total throughput and switching
cost while maintaining the fairness between them.

Keywords Cognitive radio networks · Dynamic spectrum access · Multi response learning
automata · Channel selection · Admission control

1 Introduction

Due to increasing demands for wireless communication services, the available radio fre-
quency spectrum has become more scarce. Cognitive radio (CR) technology is emerged to
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improve the bandwidth usage efficiency by opportunistically using the traditional licensed
bandwidth allocation by dynamic spectrum access (DSA) techniques. In a hierarchical DSA
model [1], the aim is to share the allocated licensed spectrum of primary users (PUs) among
secondary users (SUs) without causing harmful interference. Two common schemes for spec-
trum utilization are underlay and overlay approaches. The former imposes severe constraints
on the transmission power of SUs while the latter aims to find when and where the SUs should
transmit. In overlay approach, which is adopted in this paper, there are three online cognitive
tasks [2]: (1) radio-scene analysis, (2) channel identification, and (3) transition power control
and dynamic spectrum management. Through interaction with the environment, these three
tasks form a cognitive cycle for DSA [2]. The SU can be considered as an agent that should
interact with the environment to sense, learn from the feedbacks, and adjust its transmission
parameters to efficiently exploit the spectrum holes.

In this work, we seek two main objectives: (1) estimating the behavior of PUs on each
channel for efficient utilization of spectrum holes and (2) selecting channels appropriately
considering the collisions with other SUs. Since the primary traffic distributions is not avail-
able to SUs a priori, some algorithms are required to find the availability probability of PUs
in each channel. On the other hand, this algorithm should also account for the competition
between SUs to exploit the channels’ spectrum holes simultaneously. Therefore, the SU acts
as a decision maker which selects channel sequentially to maximize its utilization of spec-
trum holes. We deploy learning automata (LA) in each SU for decision making and channel
selection. LA helps to aggregate the received feedbacks of SUs’ previous interactions with
the environment. The main contributions of this paper are summarized as follow:

1. We use LA for single SU scenario of CR networks. In this scenario, the SU learns the
PU’s traffic distribution using an adjusted LA which interacts with the environment.

2. The multi response learning automata (MRLA) [3] for multiple SUs scenario is then
discussed. With this type of learning automaton we can model the primary traffic and
secondary collisions as a set of environmental feedbacks to learn the behavior of PUs
and other SUs. The aim is to minimize the incurred interferences for PUs and other
SUs considering the total SUs’ throughput, switching cost and fairness as performance
metrics.

3. When the number of SUs are greater than the number of primary channels, an admission
control scheme is proposed and integrated with MRLA to restrict the number of com-
peting SUs.
The rest of this paper is organized as follows: the related works are presented in Sect. 2.
Network model and problem statement are discussed in Sect. 3. Section 4, introduces
some basic concepts on LA and MRLA. The proposed algorithm based on LA for sin-
gle SU scenario and MRLA for multiple SUs scenario are presented in Sects. 5 and 6,
respectively. Section 7 presents the new admission control mechanism for multiple SUs
scenario. Simulation results and performance evaluation are presented in Sect. 8. Finally,
we conclude the paper in Sect. 9.

2 Related Works

The practical implications of artificial intelligence (AI) for CR designs are reviewed in [4].
The cognitive term implies awareness, perception, reasoning and adjustment, and hence
learning is an essential part of CR user. The authors in [5] model cognitive radio with dif-
ferent reasoning and learning engines and describe applications of these models for DSA.
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Since DSA problem in single SU model is equivalent with the classical multi armed bandit
problem, cognitive medium access can use tools from reinforcement machine learning [6]. In
[7], a channel selection algorithm is presented which assumes particular frequency channels
are free to use all the times. This assumption decreases network performance. In [8], Exp3
algorithm is used to develop an adaptive DSA protocol. An enhancement to Exp3 is also
derived in [8], which uses a weighting factor that adaptively changes based on channel sta-
tistics. In [9], Rule1 algorithm is developed which is discussed to be the optimal scheme for
channel selection in single SU scenario. In this algorithm, a logarithmic term in updating the
SU’s strategy is used to guarantee enough sampling time for each channel. If the availability
probability of channel i is θi , the probability of accessing channel i based on Rule1 converges
to the θi in probability. That is, each channel is selected according to its availability proba-
bility. Therefore, the SU will select the channel which has maximum spectrum holes. For the
multiple SUs scenario, Rule3 is proposed. It is proved that if the number of SUs is large, the
scheme in Rule3 converges to Nash equilibrium θi∑N

i=1 θi
, where N is the number of primary

channels. When a collision occurs and K users select the same channel i , Rule3 allocates
Bi
K bits of bandwidth to each user, where Bi is the total available bandwidth of channel i .
In a practical scenario the allocation of bandwidth to competing users is not perfect as it
is assumed in Rule3. In [10,11], LA is used for DSA problem assuming a stationary envi-
ronment for PUs traffic distribution. That is, the traffic distribution of PUs does not change
over time. However, in practical scenarios the SUs interact with non stationary environment.
In addition, just single SU scenario is considered and the competition between SUs is not
discussed. In [12], a LA based algorithm is developed for dynamic environments for a single
SU scenario. This algorithm starts learning again when it detects a change in PUs channel’s
traffic distribution, which is time wasting.

3 Network Model and Problem Statement

Consider a primary network where the set of channels is denoted by M = {1, . . . ,M}, where
the bandwidth of channel m ∈ M is B Hertz.

We assume a time slotted system, i.e., at each time slot t ∈ {1, . . . , T }, the SU selects a
channel to sense for possible exploitation. At the end of each time slot, receiver sends back
ACK packets to transmitter for successful transmission. The sensing is assumed to be perfect
and the SU can correctly infer the presence of PU on a channel which is explored. For the
multiple SUs scenario, the set of SUs is denoted by N = {1, . . . , N }.

Let channel m be free with probability θm and busy with probability 1 − θm . We define a
Bernoulli random variable ζm(t), which equals 1 if channel m is free at time slot t and equals 0
otherwise. Note that the SUs are not aware of the channel availability vector θ = (θ1, . . . , θm).
For single SU scenario, the objective is to explore the channels and exploit their free spaces
according to their availability parameters. For multiple SUs scenario, the objective is explor-
ing the channels by the SUs simultaneously considering their competition and possible col-
lisions. Let Cm(t) be the set of SUs that select channel m at time slot t .

The SU n can send B bits over channel m at time slot t , after exploring it, if ζm(t) = 1 and
|Cm(t)| = 1. If ζm(t) = 0, the SU will wait until the next time slot for channel exploration.
If ζm(t) = 1 and there is a collision with other SUs, |Cm(t)| > 1, none of the competing
SUs can exploit the bandwidth of the selected channel in that time slot. Let NonColm(t) be a
Bernoulli random variable which equals 1 if there is not any secondary collision on channel
m(t) in time slot t and 0 otherwise. The total number of bits that SU n ∈ N is able to send
during T time slots is given by:
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Wn =
T∑

t=1

B.ζm(n,t)(t).NonColm(t)(t) (1)

where m(n, t) is the selected channel at time slot t by SU n. The goal is to maximize the
expectation of the total throughput of all SUs which is given by (2).

W =
N∑

n=1

Wn =
N∑

n=1

T∑

t=1

B.ζm(n,t)(t).NonColm(t)(t) (2)

Switching from channel i to channel j is possible during time slots and incurred switching
cost c. The total channel switching cost is computed by adding the number of times that each
SU switches from a channel to another one during T slots. This cost should not be high in a
reasonable channel access strategy.

4 Basic Concepts of Learning Automata

4.1 Learning Automata (LA)

An agent which is empowered with LA interacts with the environment and adjusts its actions
according to the received response of the environment. The actions are chosen according to a
probability distribution which is updated based on environment responses that the automaton
obtains by performing a particular action. Details and formal definitions of LA can be found
in [13]. A block diagram of a learning automaton is presented in Fig. 1.

In this figure, at time instance t , the automaton selects an action a(t) = ai from its action
set {a1, . . . , ar } as an input to the environment. The action is selected based on a probability
vector P(t) = {P1, . . . , Pr }, which is updated during time slots. The initial value of this vec-
tor is typically set as Pi (t) = 1

r , ∀i , where r is the number of actions. The environment then
responses to the input by a reinforcement signal X (t). Three kinds of environment models
can be defined according to response X (t). P-Model, in which X (t) ∈ {0, 1}, Q-Model, in
which X (t) takes discrete values in the range [0,1], and S-Model, in which X (t) takes con-
tinuous values in the range [0,1]. The automaton then updates its probability vector for the
next time slot P(t + 1) based on the reinforcement scheme. P(t + 1) = T [P(t), a(t), X (t)]
represents the learning algorithm. Let i be the index of selected action in time slot t , then the
recurrent equation for updating P is defined by (3) and (4).

Fig. 1 Block diagram of a learning automaton

123



Joint Admission Control and Channel Selection 633

Fig. 2 Block diagram of MRLA

For reward response:

Pi (t + 1) = Pi (t)+ α.(1 − Pi (t))

Pj (t + 1) = Pj (t)− α.Pj (t), ∀ j, j �= i (3)

For penalty response:

Pi (t + 1) = (1 − β).Pi (t)

Pj (t + 1) = β

r − 1
+ (1 − β).Pj (t), ∀ j, j �= i (4)

where α and β are reward and penalty parameters, respectively. In linear schemes including
linear reward-penalty, L R−P , linear reward-inaction, L R−I , and linear reward- ε penalty,
L ReP , we have α = β, β = 0, and β � α, respectively. In [13], other non linear learning
algorithms are also discussed.

One of the main advantages of LA is that, it needs no information about the environment
in which it operates. Therefore, it is a good framework for a single SU in CR network, which
does not have any knowledge about the traffic distribution of PUs. Another advantage of LA
is its adaptive behavior which is well suited for dynamic environments like CR networks.

4.2 Multi Response Learning Automata (MRLA)

Like LA, MRLA [3] selects an action a(t) = ai from its action set {a1, . . . , ar } as an input to
the environment. Figure 2 shows a block diagram of MRLA. The MRLA algorithm extends
L R−P scheme to Q-Models by introducing different reward and penalty parameters for dif-
ferent environment responses. These parameters are adjusted according to how favorable or
unfavorable the environment response is.

That is, the environment response for action i is an element of the set X =
{X1

i , X2
i , . . . , X R

i , X̄ P
i , X̄ P−1

i , . . . , X̄1
i } Where {X1

i , X2
i , . . . , Xr

i } is the reward set and
{X̄ P

i , X̄ P−1
i , . . . , X̄1

i } is the penalty set. The corresponding reinforcement signals for the
actions set X are α1

i , . . . , α
r
i and β1

i , . . . , β
r
i . Also, R and P are the number of rewards and

penalties defined for the environment, respectively. Assume that 0 ≤ X1
i < · · · < X R

i <

mi < X̄ P
i < · · · < X̄1

i ≤ 1, where mi is the threshold for a response to be considered as
reward or penalty. It is clear that X1

i is the best reward, VeryGood response, and X̄1
i is the

worst penalty, VeryBad response. The probability vector is updated like linear reinforcement
schemes in LA.

According to [3], as a special case, reward and penalty functions for action i can be
defined as gr

i = η ∗ αr
i and h p

i = η ∗ β p
i , where 0 < η ≤ 1, 0 < αr

i , β
p
i < 1, r = 1, . . . , R,
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and p = 1, . . . , P . Based on αr
i , β

p
i , r and p we have QMRLAR−P ,QMRLAR−I and

QMRLAReP schemes, where the reward parameter αr
i , r = 1, . . . , R and the penalty param-

eter β p
i , p = 1, . . . , P satisfy 1 > αR

i > · · · > α2
i > α1

i > 0, and 1 > βP
i > · · · > β2

i >

β1
i > 0. The action probability vector is updated according to the learning algorithm which

is deployed.
The MRLA based learning algorithm have two useful properties [3]. First, this algorithm

preserves the feasibility of the action probabilities which are always nonnegative and sum to
one. The second is that, the MRLA based algorithm with positive penalty function is nonab-
sorbent, i.e., it is not trapped in a specific action and no action is selected with probability one.
This is a desirable property for dynamic environments where the optimal action is changing
over time. In other words, an action which is optimal in a specific time may not be optimal
any more.

5 LA for Single SU Scenario

5.1 LA Based Dynamic Spectrum Access

In this scenario, there is only one SU in the CR network, i.e., N = 1. A learning automaton
is configured in the SU, and sequentially selects one of the primary channels. Therefore,
the automaton has M actions equivalent to the M primary channels to be selected, i.e.,
a = {a1, a2, . . . , aM } and the response of the environment is X ∈ {0, 1}. When the SU
selects a channel which is free of primary traffic, then the environment response is a reward,
X = 0, and when the selected channel is busy with primary traffic, the response is a penalty,
X = 1. The learning automaton of the SU selects a channel in time slot t , based on proba-
bility vector P(t) = (P1(t), . . . , PM (t)), where Pi (t) is the probability of selecting channel
i at time slot t . After receiving the response from the environment, the learning automaton
uses a reinforcement scheme to update the probability vector P(t) for the next time slot.
The objective of the SU is to minimize the received average penalty from the environment.
In the proposed method, we use a linear scheme which uses Eqs. (5) and (6) for updating
probability vector P(t + 1), where the SU selects channel i .

Pj (t + 1) = Pj (t)− g j (P(t)) channel i is free at time slot t, for all j �= i

Pj (t + 1) = Pj (t)+ h j (P(t)) channel i is busy at time slot t, for all j �= i
(5)

For preserving probability measure, we should have
∑M

j=1 Pj (t) = 1, so that

Pi (t + 1) = Pi (t)+
r∑

j=1
j �=i

g j (P(t)) when channel i is free at time slot t,

Pi (t + 1) = Pi (t)−
r∑

j=1
j �=i

h j (P(t)) when channel i is busy at time slot t

(6)

Also, g j (.) and h j (.) are the reward and penalty functions respectively which are contin-
uous and nonnegative, satisfying (7) [13].
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Algorithm 1 The single SU LA based DSA
Initialization:
Select α and β according to the LA scheme
Pm (1) = 1

M ,m = 1, . . . ,M
for t = 1 to T do

i = The selected channel based on P(t)
Sense channel i
if channel i is free then

Exploit channel i
Pi (t + 1) = Pi (t)+ α[1 − Pi (t)]
Pj (t + 1) = Pj (t)− αPj (t), j �= i

else
Pi (t + 1) = (1 − β).Pi (t)

Pj (t + 1) = β
M−1 + (1 − β).Pj (t), j �= i

end if
end for

0 < g j (P) < Pj , 0 <
M∑

j=1
j �=i

[Pj + h j (P)] < 1 (7)

For all i = 1, . . . ,M . This assumption ensures that all the components of P(t +1) remain
in (0,1). As an special case, in linear reinforcement schemes the reward and penalty functions
are given by (8).

g j (P(t)) = αPj (t), h j (P(t)) = β

M − 1
Pj (t) (8)

where α and β are reward and penalty parameters and 0 < α < 1, 0 ≤ β < 1 [13]. Using (8)
in (5) and (6), one can obtain the updating scheme which is presented by (3) and (4). Pseudo
code of the proposed LA based single SU algorithm for channel selection is presented in
Algorithm 1.

In the initialization phase, we set the probability of all channels for the first time slot to
1
M . This is because at this time slot, the automaton does not have any information about the
availability probability of channels. It will attain information about these probabilities in the
consecutive time slots by interacting with the environment and updating vector P(t).

5.2 Analysis of LA Based DSA

The convergence properties of LA directly depends on the kind of reinforcement scheme
which is used. For example, linear reward-penalty (LR−P ) and linear reward-ε penalty (LReP )
schemes converge in distribution but linear reward-inaction (LR−I ) scheme converges with
probability one to the optimal action. According to [13], LR−P and LReP are ergodic schemes
and they have no absorbing states. An ergodic scheme is characterized by the property that
the Markov process {P(t)}t≥0 which is generated by the scheme is an ergodic process.

According to [13], if LR−P based channel selection scheme is used in Algorithm 1, the
final channel selection probabilities converge in distribution to a random variable with mean
(9), independent of its initial value P(0).

lim
t→∞ E[Pi (t)] = 1/1−θi

∑M
i=1

1/1−θi

(9)
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If LReP scheme is used, Algorithm 1 converges in distribution to a normal process with
mean (10), independent of its initial value P(0) [13].

P̄i = ε
(1 − θH )

(M − 1)(θi + θH )
, i = 1, . . . ,M and i �= H

P̄H = 1 −
∑

i �=H

P̄i (10)

where H is the index of channel with highest availability probability, i.e., θH ≥ θ j, j =
1, . . . ,M, j �= H . We should note that, if ε is selected sufficiently small the best channel is
most explored by the SU. For LR−I learning scheme, one of the elements of the action prob-
ability vector converges to one. The selected channel depends on the initial value of P(0).
This scheme is not appropriate for dynamic environment of CR because of the existence of
absorbing states.

6 Multiple SUs Scenario

6.1 MRLA Based Dynamic Spectrum Access

We use MRLA to control both primary and secondary collisions, in multiple SUs scenario.
Each SU deploys a MRLA algorithm. These automata try to reduce both primary and sec-
ondary collisions. We should note that, avoiding primary collisions is more important than
avoiding secondary collisions. When the number of SUs in the network is sufficiently larger
than the number of primary channels, i.e., N � M , the secondary collision on channels
with higher probability of being free, is inevitable. Therefore, in the proposed method, the
environment response is a reward when a SU selects a channel which is free of PUs, even if
other SUs select this channel. However, the value of the reward parameter is greater when
just one SU selects this channel. The SU receives a penalty when it selects a channel which
is busy by PUs. Therefore, in the proposed scenario, we have two rewards and one penalty.
In other words, if a SU selects channel i , the environmental feedbacks are defined as follow:

– VERYGOOD: Channel i is free of PUs and no other SUs selects this channel (rewarded
heavily with α1)

– GOOD: Channel i is free of PUs and is also selected by other SUs (rewarded marginally
with α2)

– BAD: Channel i is busy by PUs (penalized with β)

Figure 3 illustrates different SUs which sense primary channels and receive different
kinds of response from the environment. One can define more reward and penalty elements
in each set by considering parameters such as power, channel switching, throughput and etc.
In MRLA scenario, the environment response is an element of {α1, α2} or is a penaltyβ. Note
that a VERYGOOD response is more favorable than GOOD, hence the reward parameter α1

is greater than α2, i.e., α1 > α2.
Let Res(t) be the response of the environment at time slot t when action i is selected.

We can define (11) and (12) to be the probabilities for the reward and penalty responses,
respectively.

di = Pr[Res(t) ∈ {α1, α2}|a(t) = ai ] = θi (11)

ci = Pr[Res(t) = β|a(t) = ai ] = 1 − θi (12)
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Fig. 3 Accessing primary channels. User #1 gets BAD response (β) from the environment because it selects
channel 1 which is busy by PU. User #2 selects channel 2 which is free, therefore it gets VERYGOOD response
(α1). User #3 and #4 select channel 7 which is free, but because of collision between them, the environment
response is good (α2)

On the other hand, since at least one of these responses is occurred, we should have:

d1
i + d2

i + ci = 1 (13)

Reward and penalty functions are defined gr
i (.) = ηαr and hi (.) = ηβ, respectively.

Where η is a random variable in the range (0,1]. Using the specified reward and penalty
functions, if action i is selected, the probability vector is updated based on (14) and (15) for
reward and penalty responses, respectively.

Pi (t + 1) = Pi (t)+ ηαr [1 − Pi (t)]
Pj (t + 1) = Pj (t)− ηαr Pj (t), ∀ j �= i (14)

Pi (t + 1) = Pi (t)− ηβ p Pi (t)

Pj (t + 1) = Pj (t)+ ηβ p ∗
[

1

M − 1
− Pj (t)

]

, ∀ j �= i (15)

Using (14), the SU increases the probability of selecting channel i and decreases the prob-
abilities of other channels for reward response. (15) is also interpreted for penalty response.
The pseudo code of the proposed MRLA based channel selection algorithm for multiple SUs
scenario is presented by Algorithm 2.

6.2 Analysis of MRLA Based DSA

According to [3], MRLA has the ergodicity property and the sequence {P(t)} converges in
distribution to a random variable p∗ which its distribution function is independent of P(0).
Therefore, the proposed MRLA based DSA converges according to Proposition 1.

Proposition 1 The MRLA based DSA for multiple SUs scenario when α1
i d1

i +α2
i d2

i +βi ci =
const, ∀i = 1, . . . ,M is ergodic and Pn(t), n = 1, . . . , N converges in distribution to a
random variable with mean
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Algorithm 2 The multiple SUs MRLA based DSA
Initialization:
Select {α1, α2} and β parameters according to MRLA scheme
Pn

m (1) = 1
M , m = 1, . . . ,M, n = 1, . . . , N

for t = 1 to T do
for n = 1 to N do

i = The selected channel based on Pn(t)
Sense channel i
if channel i is free then

Exploit channel i
if no secondary collision exist then

r = 1
else

r = 2
end if
Pn

i (t + 1) = Pn
i (t)+ ηαr [1 − Pn

i (t)],
Pn

j (t + 1) = Pn
j (t)− ηαr Pn

j (t), j �= i
else

Pn
i (t + 1) = Pn

i (t)− ηβPn
i (t)

Pn
j (t + 1) = Pn

j (t)+ ηβ ∗ [ 1
M−1 − Pn

j (t)], j �= i
end if

end for
end for

lim
t→∞ E[Pi (t)] = 1/β(1−θi )

∑M
j=1

1/β(1−θi )

= 1/(1−θi )
∑M

j=1
1/(1−θi )

(16)

Independent of the initial probability Pn(0).

Proof Please see [3]. �
Comment 1 Equation (16) is for MRLAR−P scheme. Because in linear reward-penalty
scheme αr

i = β
p
i , which implies ergodicity condition,

R∑

r=1

αr
i dr

i +
P∑

p=1

β
p
i cp

i = const, ∀i,

which says that, the sum of the reward probability rates, αr
i dr

i , plus the sum of penalty
probability rates, β p

i cp
i , should be the same for all actions [3].

Comment 2 For other types of MRLA schemes like MRLAR−I and MRLAReP convergence
is exactly the same as one described in Sect. 5.2.

7 Admission Control Mechanism

7.1 ψ-MRLA Based Dynamic Spectrum Access

In this section, a new method is introduced for admission control in order to decrease the rate
of secondary collisions. In this mechanism we use Action parameter to block some of SUs
in each time slot, that is, at each time slot the algorithm admits each SU with probability ψ
(Action mode) and blocks it with probability 1 − 
 (NoAction mode). The aim of using
this parameter is to block some SUs when the rate of secondary collisions is high, in order
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to improve the total performance. Therefore, there is another step before channel selection.
If NoAction mode is selected by a SU, it should try to access channels in the next time slot.
Otherwise, it uses Algorithm 2. In the following, we explain how to adaptively adjust the
blocking probability.

The blocking probability should be adjusted in each time slot according to the number
of SUs which are competing for each channel. In order to adjust this parameter, the SUs
change their ψ parameter based on the rate of collisions in the network. When the rate of
collision is high, the SU should decrease
 in order to decrease the number of SUs choosing
Action mode. On the other hand, the SU should increase it when it senses the channel with
no secondary collision. The updating equation for 
 is given in (17).

{
ψ(t + 1) = min(ψ(t)+ μ, 1) , no secondary collision
ψ(t + 1) = max(ψ(t)− μ, 0) , secondary collision

(17)

where μ is a uniform random variable between (0,1) selected by each SU when it plugs into
the network and min and max are for bounding ψ(t) between 0 and 1.

This algorithm is operating as the same as MRLA based multiple SUs DSA. The only
difference is that, ψ-MRLA uses ψ to block some of SUs in each time slot. In order to
consider the fairness between SUs, when a SU selects NoAction mode it also increases its

 parameter. This will increase the contribution probability of this SU in the next time slot.
In NoAction mode, SUs do not update their channel availability probability because they
do not interact with and receive feedback from environment.

7.2 Analysis of ψ-MRLA Based DSA

It can be proved that the sequence {P(t)} in ψ-MRLA algorithm converges in distribution
to a random variable p∗ given by (16), in MRLAR−P reinforcement scheme. Other kinds of
reinforcement schemes like MRLAR−I and MRLAReP are the same as Sect. 5.

The main difference of
-MRLA is that the SUs do not update their channel access prob-
abilities in all time slots. That is, each SU updates its access probabilities according to its 

parameter. In the following, using the asynchronous algorithm model of [14], we show that
the final value whichψ− M RL A converges to is the same as MRLA. Let T = {1, 2, . . . , T }
denotes the set of all time slots. Also, let T̃i ⊆ T be the set of time slots at which SU i is
in Action mode and updates its probability vector based on environment feedbacks. At time
slots t /∈ T̃i , user i is in NoAction mode, and its probability vector is left unchanged. The
probability updating equation for SU i is now given by:

P(t + 1) =
{

f (P(t)) t ∈ T̃i

P(t) otherwise
(18)

where f (.) is the updating function defined by (14) and (15).

Proposition 2 Theψ-MRLA algorithm converges in distribution to a random variable which
MRLA converges to, independent of the initial probability P(0).

Proof According to [15], when f (P(t)) is a standard function, the iterative algorithm using
P(t + 1) = f (P(t)) is called the standard algorithm. We proved in Appendix that ψ-MRLA
algorithm is a standard algorithm. Also, it preserves the feasibility of the action probability
space, i.e., at each iteration ofψ-MRLA, the action probabilities are always nonnegative and
sum to 1. According to [15], if f (P) is feasible, then from any initial probability vector p, the
asynchronous standard algorithm converges to p∗. Since ψ-MRLA is feasible and standard,
then starting with any initial probability P(0), ψ-MRLA converges to p∗ like MRLA. �
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Fig. 4 Total throughput of LA–DSA methods compared to Rule1 in stationary environment

8 Performance Evaluation

Three performance criteria are considered in our simulation and are compared with other
methods. The first is the total throughput which is defined by (2). The second criterion is
Jain’s fairness index [16]. We use this index in order to show how fairly the algorithm is
performing. Jain’s index is used to rate the fairness of different schemes on how the SUs
exploit the spectrum white spaces. That is, if the throughput of SU i is xi , then the Jain’s
fairness index is given by:

J (x1, x2, . . . , xN ) =
(∑N

i=1 xi

)2

N .
∑N

i=1 xi
2

(19)

This index ranges from 1
N (worst case) to 1 (best case), and its maximum value is achieved

when all SUs receive the same allocation. We use the total channel switching cost as the third
criterion which is defined in Sect. 3.

We assume 10 primary channels in all simulations and the simulations are done for
T = 4,000 slots. We use θ = [0.90 0.300.48 0.21 0.48 0.67 0.36 0.40 0.23 0.86] for
stationary network. It means that for all T time slots, the traffic distribution for pri-
mary channel i , is fixed and equal to θi . For the dynamic environment we use θ =
[0.10 0.20 0.30 0.90 0.19 0.10 0.19 0.39 0.49 0.19] for the first T/2 time slots and θ =
[0.90 0.11 0.41 0.10 0.10 0.29 0.10 0.10 0.10 0.10] for the second T/2 time slots.

8.1 Single SU Scenario

We use LR−P with α = β = 0.09, LR−I with α = 0.09, and LReP with α = 0.09 and
β = 0.009. The throughput of these three schemes as well as Rule1 [9] in a stationary envi-
ronment is shown in Fig. 4. This Figure shows that LR−I and LReP outperform Rule1 in
total throughput. LR−I is an absolutely expedient scheme which converges to the optimal
action with probability one. The SU which employs LR−I finds the best available channel
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Fig. 5 Number of channel switching for LA–DSA methods compared to Rule1 in a stationary environment,
with 4,000 time slots
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Fig. 6 Total throughput of LA–DSA methods compared to Rule1 in a dynamic environment

after some time slots. LR−I sticks to the best channel until the end of time slots. This leads to
lower switching cost, which is presented in Fig. 5. In this figure the total number of switching
between channels is depicted.

If the primary traffic distribution changes over time slots, then LR−I performance degrades,
because of absorbing state. It can not find the new best channel because β = 0 and there is
no updating whenever the best channel is changed. This fact is presented in Fig. 6, when the
total throughput is decreasing after time slot 2,000.

On the other hand, LReP performs the same as LR−I but with a very small value of
penalty parameter, i.e., β � α. This reinforcement scheme is ε—optimal. We find from
Fig. 6 that LReP also performs well in dynamic environment and it can adapt quickly to the
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Fig. 7 Total throughput of MRLA–DSA methods compared to Rule3 with different number of SUs in the
network

environment. Switching cost in LReP is more than LR−I , because in contrast to LR−I , LReP

gives a chance to other channels to be selected.
LR−P has different behavior compared to LR−I and LReP . As α = β in LR−P , it updates

action probabilities with the same rates when there is reward or penalty response. As the
result, in LR−P algorithm, the probability of selecting a non best channel is higher than other
methods. This causes more channel switching as well as increasing the chance of selecting
less available channels. Therefore, the total throughput has the lowest value compared to
other schemes.

8.2 Multiple SUs Scenario

For MRLAR−P , the parameters are set to α1 = α2 = β = 0.09, and for MRLAReP , we
set α1 = 0.09, α2 = 0.01 and β = 0.01. The results are compared to Rule3 [9]. Figure 7
shows the total throughput of these schemes for different number of SUs in the network. It is
clear that, as the number of SUs is increasing the total throughput decreases due to secondary
collisions. Figure 8 shows the Jain’s fairness index for these schemes. We do not consider
MRLAR−I since the SUs will select the same channel and collide in all time slots.

As there are 10 primary channels the peak of Fig. 8 is happened at 10 SUs. We can explain
the behavior of these algorithms using Fig. 9.

Figure 9 shows the probability of selecting each of 10 primary channels by 10 SUs. As
Fig. 7 shows, MRLAReP has higher total throughput than other methods, when the number
of SUs is equal to the number of primary channels. MRLAReP allocates channels to SUs in a
distributed manner. Because of this fact, Jain’s fairness index decreases at N = 10. However,
MRLAR−P considers high probability for more available channels and low probability for
others. As Fig. 9 shows, channel 1 and 10 have higher probabilities in MRLAR−P model
because channel 1 and 10 are the best available channels. This behavior is well performed
when there are large number of SUs in the network, i.e., N � M . In that case, the majority
of SUs select channel 1 and 10 and there will be high collision rate on these channels. But
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Fig. 8 Jain’s fairness index of MRLA–DSA methods compared to Rule3 with different number of SUs in the
network
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Fig. 9 Probability of selecting 10 primary channels for 10 SUs in Rule3, MRLAR-P and MRLAR-P after
convergence

a few SUs will select other channels which have successful transmission if that channel is
free. This fact helps MRLAR−P scheme to have more total throughput compared to other
schemes, when the number of SUs are greater than the number of primary channels.
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Fig. 10 Total throughput of ψ-MRLA–DSA methods compared to Rule3 and MRLA–DSA, with different
number of SUs
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Fig. 11 Jain’s fairness index of ψ-MRLA DSA method compared to Rule3 and MRLA DSA, with different
number of SUs

8.3 Admission Control Mechanism

In this section, we will explain the behavior of MRLAReP , using Action parameter for admis-
sion control. In a stationary environment, we use MRLARep in which the reward and penalty
parameters are set to α1 = 0.09, α2 = 0.01, β = 0.01 in all cases. Then we consider the pro-
posed admission control in Sect. 7. Decreasing the number of SUs in the network reduces the
number of secondary collisions. The proposed ψ-MRLA DSA uses this fact to increase the
total throughput in CR networks. Figure 10 shows that, ψ-MRLA DSA. Figure 11 shows
the Jain’s fairness index of these methods.
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Again, since MRLAReP allocates channels in a distributed manner, there is a decrease in
Jain’s fairness index when M = N = 10. As it is shown in Fig. 11, ψ-MRLA DSA outper-
forms Rule3 regarding the Jain’s fairness index, when the number of SUs is greater than the
number of Primary channels. The Jain’s fairness index is k

N , when k users equally share the
resource and the other n − k users receive zero allocation. As the number of k increases, this
index also is increased. Since in ψ-MRLA DSA, there is lower secondary collisions when
N � M , more SUs have successful transmission. Therefore, the Jain’s fairness index will
decrease.

Figure 12 shows the number of channel switching when three SUs are competing to exploit
10 primary channels. From this figure we find that, MRLA DSA and ψ-MRLA DSA have
lower channel switching than Rule3 due to their distributed behavior on selecting channels.

Finally, the total number of collisions is depicted in Fig. 13. we find that the proposed

-MRLAReP efficiently decreases the number of secondary collisions by admission control
mechanism.

8.4 Convergence Issues

Figure 14 shows the convergence behavior of MRLA DSA for MRLAR−P scheme. This
results is the same as what is expected by (16). As we expected, Fig. 15 shows that channels
1, 6, and 10 are selected by three existing SUs in MRLAReP scheme.

To compare the rate of convergence, we summarized the required number of iteration for
convergence in Table 1. Generally speaking, the value of reward and penalty parameters in
LA based algorithms play an important rule in convergence speed. These results are com-
puted by averaging 100 times of running each algorithm for three SUs scenario. The results
show that the convergence speed are almost the same.

9 Conclusion

We use learning automata in single secondary user scenario and multi response learning
automata in Multiple secondary users scenario for dynamic spectrum access algorithm, in
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Fig. 14 Convergence of channel selection probabilities for three SUs in proposed ψ MRLAR−P method

cognitive radio networks. By deploying learning automata, the existing secondary user can
exploit channels better. It is showed that, learning automata based dynamic spectrum access
algorithm performs well when LReP scheme is used. Also, we show that multi response
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Fig. 15 Convergence of channel selection probabilities for three SUs in proposed ψ MRLAReP method

Table 1 The required number of
iterations until the algorithms
convergence

Algorithm Convergence time

Rule3 [9] 441

Proposed MRLAReP 393

Proposed 
 MRLAReP 412

learning automata based dynamic spectrum access algorithm can control the competition
between secondary users as well as exploiting available channels. This leads to decrease the
rate of collisions and increase the total throughput. Also, we proposed an admission con-
trol mechanism to restrict the number of competing secondary users. Switching cost and
convergence of all algorithms are discussed and compared to recent schemes.
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Appendix

Function f (P) is standard, if for all P ≥ 0 three properties are satisfied: (1) Positivity:
f (P) > 0, (2) Monotonicity: If P > P′, then f (P) ≥ f (P′), and (3) Scalability: For all
ν > 1, ν f (P) > f (νP) [15].

Using (14) and (15), the positivity property is implied by a nonzero value of each com-
ponent of P(t).
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Noting that, if LA has the following property it is absolutely monotonic [17].

φ1(t)

P1
= φ2(t)

P2
= . . . = φm(t)

Pm
= λ(P)

In 
-MRLA, we have φ j (t) = g p
j (X (t))Pj (t), for reward response or φ j (t) =

h p
j (X (t))Pj (t), for penalty response, which leads to λ(P) = ηαr

j for reward response or
λ(P) = ηβ j for penalty response. Therefore, f (P) is absolutely monotonic.

For the scalability property we have:

– For reward function: f (νP) = νP+ηα[1−νP] and ν f (P) = νP+νηα[1−P] Therefore,
ν f (P) − f (νP) = ηα(ν − 1) > 0, ∀ν > 1, 0 < α < 1, 0 < η < 1 Which leads to:
ν f (P) > f (νP).

– For penalty function: f (νP) = νP+ηβ 1
|a|−1 −νηβP and ν f (P) = νP+νηβ 1

|a|−1 −νηβP

Therefore, ν f (P)− f (νP) = ηβ 1
|a|−1 (ν − 1) > 0, ∀ν > 1, 0 < β < 1, 0 < η < 1

Therefore, we have ν f (P) > f (νP), ∀ν > 1 in all cases and the scalability property of
the updating function is proved.
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